

YBSL-W 无线继电保护矢量分析仪

使用说明书

武汉卓亚电力自动化有限责任公司

wuhan zhuoya electric power automation co.,ltd

|--|

第·	一部分	产品概述4
	1.概述	
	2.技术	指标6
	2.1	测量范围及误差6
	2.2	工作条件 6
	2.3	电源6
	3.产品	配置7
第.	二部分	仪表操作说明8
	4.测量	接线
	4.1	Y 型接线8
	4.2	△型接线8
	5.基本	操作说明8
	5.1	仪表开机
	5.4	使用外接 DC 电源10
	5.5	测量功能的选择10
	5.6	界面导览
	5.7	按键使用说明13
	6.无线	遥测14
	6.1	功能说明14
	6.2	操作说明14

7.三相伏安测量	
7.1 功能说明	
7.2 操作说明	24
8.矢量图测量	
8.1 功能说明	
8.2 操作说明	
9.单路测量	
9.1 功能说明	
9.2 操作说明	
10. 相位测量界面	
10.1 功能说明	
10.2 操作说明	
11. 功率测量	
11.1 功能说明	
11.2 操作说明	
12. 三相不平衡测量	
12.1 功能说明	
12.2 操作说明	
13. 参数设置	
13.1 功能说明	
13.2 操作说明	
第三部分 产品外形图	

第一部分 产品概述

1.概述

无线继电保护矢量分析仪是分布式无线同步测量伏安相位电参数 的仪器,由两台手持测量终端组成,每台手持终端单独使用时,可以 当作三相伏安相位表使用。两台同时使用时可以同步测量六路电压, 六路电流的幅值,相位等参数,同步测量相位误差在 0.5°以内,非 常适合变压器差动保护矢量分析,母线差动保护矢量分析。

无线继电保护矢量分析仪彻底解决变电站内分布式同步测量的问题,无需 GPS,无需放电缆来引入参考电压,避免由于电缆绝缘或者操作问题造成的 PT 二次短路,简单实用,适用于没有参考电压的场合,例如 2/3 接线的母线保护屏,户外电流互感器的端子箱,智能变电站合并单元前差动保护 CT 信号等,大幅提高全站多间隔相量测量工作效率。

无线继电保护矢量分析仪又称为六相保护回路矢量测试仪、回路 矢量分析仪。

单台主机可以完成三相的电压、电流、相位、频率、功率、功率 因数、三相不平衡度等电参数的高精度测量。

无线继电保护矢量分析仪具有如下功能及特点:

● 采用无线同步采样技术,无需 GPS,无需长电缆

● 同步采样六路电压, 六路电流

● 多种相位参考,可选本机 UA 或 IA,从机 UA 或 IA

● 多种矢量显示方式,可选本机电压-从机电流,从机电压-本机电

流,本机电压-从机电压,本机电流-从机电流,本机电流-从机电压, 从机电压-本机电流,本机电压-本机电流,从机电压-从机电流

● 采用专用定制天线,轻松应对站内各种复杂环境的 远距离无线 通讯

● 可选的无线中继器,解决地下室及屏蔽很好的室内无线通讯的问题

● 单机同时测量1至3路交流电压;

● 单机同时测量1至3路交流电流;

● 单机测量电压间、电流间、电压与电流间的相位;

● 单机测量频率;

● 单机测量功率;

● 单机显示六角图向量;

● 单机三相不平衡度测量

● 具有抗谐波干扰的功能,在有谐波的情况下,依然保持测量的精 度

● 电流幅值相位测量最小可达 1mA. 非常适合变电站主变带负荷试 验以及新建站或负荷小的站电流测量。

● 自动切换量程

● 电压, 电流采样全隔离

● 可通过 SD 卡升级应用程序

● 采用 3.5 寸彩色液晶显示屏

● 内置大容量锂电池,一次充电后,不关屏幕背光时,可以连续工

作10小时(开启背光关闭功能,待机时间更长)。

2.技术指标

2.1	测量	范目	围及	误差
-----	----	----	----	----

类型	测量范围	单位	误差	分辨率
电压	5 ~ 600V	V	0.5% x 读数 +5 个字	0.1V
电流	0.001 ~	А	0.5% x 读数 +5 个字	0.0001A
	6A(可扩展)			
有功功率	0.005 ~ 3600	W	0.5% x 读数(PF=1)	0.1W
无功功率	0.005 ~ 3600	VAR	0.5% x 读数(PF=0)	0.1Var
频率	45 ~ 65	Hz	0.02Hz	0.01Hz
相位	0 ~ 360	o	$+ 0.5^{\circ}$	0.1°

无线同步相位误差:+0.5°

无线通讯距离: 1000米(开阔地)

选用无线中继器通讯距离: 2000 米 (开阔地)

2.2 工作条件

工作温度: -20~50℃, 相对湿度: 0~95%无冷凝

2.3 电源

内置 3.7V/6000mAH 锂电池,开背光的情况下,最长连续工作 10 小时(开启背光关闭功能,待机时间更长)。也可以使用仪器配备的 5V/3A 交流电源适配器供电。

序号	名称	数量	单位
1	测量终端		石
2	电流钳	6	把
3	电压测试线	8	条
4	电压测试用鳄鱼夹	8	个
5	5V/3A 电源适配器	2	个
6	SD卡 (8G)	2	个
7	3.7V,6000mAH 锂电池	2	块
8	使用说明书	1	份
9	胶棒天线	2	根
10	专用定制天线	2	根
11	使用说明书	1	份

3.产品配置

第二部分 仪表操作说明

4.测量接线

4.1 Y 型接线

将 Un 接线端子(导线颜色为黑色)夹到要测量的电压信号的零 线上,U1,U2,U3 电压接线端子(导线颜色分别为黄,绿,红色) 夹到 A,B,C 三相相线上;如只需测量一相电压,将 Un 接线端子夹 到零线上,U1 接线端子夹到待测相线上;如测量两相电压,将 Un 接线端子夹到零线上,U1,U2 接线端子夹到待测相上。

电流钳侧面的箭头标示了电流的流向。将 I1, I2, I3 电流钳(钳 子线上的颜色圈依次为黄,绿,红色)夹到 A,B,C 三相相线上;如只 需测量一路电流,I1 电流钳夹到该路电流线上;如测量两路电流,将 I1,I2 电流钳夹到待测电流线上。

4.2 △型接线

将 Un 接线端子(导线颜色为黑色) 夹到 B 相上, U1 和 U3 电压 接线端子(导线颜色依次为黄, 红) 夹到 A 相和 C 相上。电流钳侧 面的箭头标示了电流的流向。将 I1, I2, I3 电流钳(钳子线上的颜色 圈依次为黄, 绿, 红色) 夹到 A,B,C 三相相线上。

5.基本操作说明

5.1 仪表开机

仪器在关机状态下,长按 ₩键约3秒钟,仪表上电。仪表首先显示"开机界面"约8秒,然后会切换到"主菜单页面",如下图1

所示:

主菜单)
无线遥测	
三相伏安表	
系统设置	

图 1

5.2 仪表关机

仪器在开机状态下,长按 ↓ 健约3秒钟,仪表关机。

5.3 SD 卡插拔

5.3.1 SD 卡插入

在仪表下侧写有 SD 卡的位置,将 SD 卡有铜触电的一面朝下,轻 轻插入,用大拇指的指甲向内顶 SD 卡,在 SD 卡正好没入卡槽,并 听到微弱的"嗒"声后,标示 SD 卡插入完成。

5.3.2 SD 卡拔出

用大拇指的指甲相内顶 SD 卡,在听到微弱的"嗒"声后,将手指移开,SD 卡会自动从插槽弹出,再将 SD 卡从仪表取出。

5.3.3 开机状态下插拔

插拔的方法与上面讲的相同。在 SD 卡插入之前, 仪表的 SD 卡图标显示为 ▲ ,表示仪表没有检测到 SD 卡,当 SD 卡插入后大约 1秒钟, 仪表的 SD 卡图标会变为 ▲,表示仪表已经检测到 SD 卡。

5.4 使用外接 DC 电源

仪表处于开机或关机状态都可以使用外接 DC 电源,开机状态下, 使用外接 DC 电源可以给仪表供电的同时,给电池充电。仪表关机状 态下,使用外接 DC 电源则只给电池供电。充电状态下,仪表电源插 孔旁的发光二极管常亮。

5.4.1 接入 DC 电源

将电源线的一端插入仪表下部标有 DC 5V 的插孔,将电源线的另一端插入交流插座。

5.4.2 断开 DC 电源

将电源线连接交流插座的一端拔出。将电源线插入仪表的另一端 拔出。

5.5 测量功能的选择

仪表所具有的功能如图1所示,无线遥测,三相伏安表。

仪表开机后,进入"主菜单"页面。在"主菜单"页面下使用←,

→方向键,将屏幕上的选择框移动到需要的功能前,按 ENTER 键进 入该功能。

5.6 界面导览

下面以"三相伏安"功能中的页面为例进行说明,如图2所示。 5.6.1 功能指示

图 2 中界面左上角的"三相伏安"表示当前处在何种测量功能。

5.6.2 状态图标指示

图 2 中界面中上部共有两种状态图标,分别表示 SD 卡状态,以 及电池电量状态。

三相伏安 🔡 🛄 16:59:42				
	I	II	III	
电压(Ⅴ)	0.0	0.0	0.0	
电流(A)	0.0000	0.0000	0.0001	
U>I(°)	333.1	344.7	4.3	
COS∮	0.891	0.964	0.997	
频率(Hz)		50.00		
	I>II	II>III	III>I	
U(°)	336.8	346.7	36.4	
I(°)	348.5	6.2	5.2	
主界面	运行	基波幅值	矢量图	

5.6.1 功能指示

图 2 中界面左上角的"三相伏安"表示当前处在何种测量功能。

5.6.2 状态图标指示

图 2 中界面中上部共有两种状态图标,分别表示 SD 卡状态,以 及电池电量状态。

5.6.3 时间指示:

图 2 中界面右上部为时间显示区域,表示当前的时间。

5.6.4 功能键提示

图 2 界面的底部是功能键提示区域,指示代表 F1, F2, F3, F4 这四个按键的功能,如果某个按键对应的区域为空,则表示,该按键 在本界面不起作用。如本界面下,F1键表示返回主界面,F2键表示 页面停止刷新,F3键表示当前处在基波幅值测量状态,F4键表示进 入矢量图界面。

5.6.5 显示操作区域

上图界面的中部为显示操作区域,在该区域显示测量结果,更改 参数设置等操作。

5.6.6 状态图标说明

SD 卡状态说明:

■表示未检测到 SD 卡, ■表示检测到 SD 卡。

电池电量状态说明:

■,■,■,■,□,□分别表示电池电量由低到高。如果当前 处在充电状态,则快速依次显示■,□,□,□,□。

5.7 按键使用说明

仪表共有 11 个按键, 分别为 F1, F2, F3, F4 四个功能键, MENU 键, ENTER 键和↑, ↓, ←, →四个方向键, **W**键电源开关键。 下面分别说明:

5.7.1 F1, F2, F3, F4 功能键:

四个功能键的定义在每个界面下可能不一样,具体的定义在液晶 屏对应的区域有文字提示。

5.7.2 MENU 键:

该键的功能是仪表返回"主菜单"界面。不论当前仪表处于何种 状态,触发该键后仪表均会进入"主菜单"界面。用户可在该界面下 重新选择需要的功能进行操作。

5.7.3 ENTER 键:

该键的功能为确认输入或确认选项。该键的使用会在各功能使用 说明中具体说明。

5.7.4 ↑, ↓, ←, →方向键:

分别为上/下/左/右四个方向键,这些键用来改变选项,参数设置 值和翻页等,这些键的使用请参考各功能使用说明中具体说明。

5.7.5 🛈 键电源开关键:

该键为仪表电源控制键。在关机状态下,用户长按大约3秒钟, 仪表会上电开机。在开机状态下,用户长按该键大约3秒钟,仪表会 断电关机。

6.无线遥测

6.1 功能说明

该功能用来无线同步测量六相电压, 六相电流。能够选择多种矢量显示, 并且可以选择本机 UA,IA,从机 UA,IA 作为相位参考。还能进行无线通讯信号质量测试。界面如图 3 所示:

图 3

6.2 操作说明

6.2.1 通讯测试功能

该功能用来测试本机与从机之间,本机与中继器(可选)之间的 无线通讯信号质量。测试结果以图标的方式显示在标题栏。其中左边 的天线图标代表本机与从机之间的无线通讯信号质量,右边的天线图 标代表本机与中继器之间的无线通讯信号质量。图标 毫表示信号质 量优,图标 毫表示信号质量良,图标 毫,毫表示信号质量不达标。 只有通讯信号质量优,或者通讯信号质量良的情况下,测试才能顺利 完成。如果信号质量不达标则需要调整天线位置或者更换天线。

按下 F1 键,开始通讯测试。仪器首先测试本机与中继器之间 的无线信号质量,然后再测试本机与从机之间的无线信号质量,只要 有一个信号质量是优或者良,试验就能顺利的进行。标题栏绿灯闪烁 则代表本机无线发送数据,如图标 ●所示。红灯闪烁则代表本机收到 无线数据,如图标 ●所示。显示灰色的灯,则表示当前没有无线数据 的收发。如图标 ◎所示。

6.2.2 无线遥测功能

按下 F2 键开始无线遥测,如果在此之前没有进行无线信号质量测 试,则自动的开始无线通讯质量测试,然后才开始无线遥测。界面不 断的刷新测量结果,直到再次按下 F2 键,停止测试。界面左边用矢 量显示当前选定的测试结果,右边是列表显示选定的测试结果的幅值 和相位,矢量图上用粗细箭头分别表示两组是矢量。在列表显示的右 侧的粗细黄色图标 (), (), (), 代表着本组电参数矢 量显示是粗或者细箭头。在矢量图显示设置页面,设置矢量显示的方 式,包括角度正方向,零序位置,基准量角度。用户可以根据自己的 习惯来设置。

6.2.3 切换显示方式功能:

按下 F3 键,切换各种显示方式,分别是:本机电压—从机电流, 从机电压—本机电流,本机电压—从机电压,本机电流—从机电流, 本机电流—从机电压,从机电流—本机电压,本机电压—本机电流, 从机电压—从机电流,共8种显示模式。 假设:

本机电量参数分别是:

UA: 100.0V∠0.0°

UB: $100.0V \angle 240.0^{\circ}$

UC: 100.0V∠120.0°

IA: $5.500 \text{A} \angle 10.0^{\circ}$

IB: $5.500A \angle 250.0^{\circ}$

IC: 5.500A∠130.0°

丛机电量参数分别是:

UA: 57.7V∠30.0°

UB: 57.7V∠280.0°

UC: 57.7V∠150.0°

IA: $3.500 \text{A} \angle 40.0^{\circ}$

IB: 3.500A∠280.0°

IC: 3.500A∠160.0°

矢量图显示设置如下:

角度正方向: 逆时针

零序位置: 三点

基准量角度: 0°

无线遥测电参数相位参考为:参考本 UA

本机电压一从机电流显示模式如下:

从机电压一本机电流显示模式如下:

本机电压一从机电压显示模式如下:

本机电流一从机电流显示模式如下:

本机电流一从机电压显示模式如下:

从机电流一本机电压显示模式如下:

本机电压一本机电流显示模式如下:

图 10

从机电压一从机电流显示模式如下:

参考相位切换功能

按下 F4 键可以更改相位参考,一共有四种相位参考,分别是本机 UA,本机 IA,从机 UA,从机 IA。

假设:

本机电量参数分别是:

UA: 100.0V∠0.0°

UB: 100.0V∠240.0°

UC: 100.0V∠120.0°

IA: $5.500 \text{A} \angle 10.0^{\circ}$

IB: 5.500A∠250.0°

IC: 5.500A∠130.0°

丛机电量参数分别是:

UA: 57.7V∠30.0°

UB: 57.7V∠280.0°

UC: 57.7V∠150.0°

IA: 3.500A∠40.0°

IB: 3.500A∠280.0°

IC: 3.500A∠160.

矢量图显示设置如下:

角度正方向: 逆时针

零序位置: 三点

基准量角度: 0°

本机电流一从机电压方式,参考本 UA,显示如下:

图 12

本机电流一从机电压方式,参考本 IA,显示如下:

本机电流一从机电压方式,参考从UA,显示如下:

图 14

本机电流一从机电压方式,参考从IA,显示如下:

7.三相伏安测量

7.1 功能说明

该功能用来测量三相电压、三相电流的基本参数。具体参数有三 相电压有效值、三相电流有效值、频率和三相电压间、电流间、电压 与电流间的相位、功率因数。界面如图3所示:

图 3

注意:此处的频率显示的是 I 相电压的频率,要测量 I 相,II 相的频率,请使用"单路测量"功能。

7.2 操作说明

7.2.1 数据保持功能

保持功能使屏幕上的参数测量值保持不变,便于用户读取、分析等。通过按下 F2 键即可实现当前测量结果的保持与取消保持。

7.2.2 切换到主界面

按下 F1 键, 仪表切换到主界面。

7.2.3 切换到真有效值测量状态

卓亚电力(认证)官网: http://www.power-kva.com 编辑: 公共信息部

按下 F3 键, 仪表切换到真有效值状态, 默认情况下, 界面上显示的电压, 电流幅值是基波幅值, 而切换到真有效值测量状态, 则界面上显示的电压, 电流幅值是真有效值。

7.2.4 切换到矢量图界面

按下 F4 键, 仪表切换到矢量图页面。

8. 矢量图测量

8.1 功能说明

该功能用矢量(相量)图的方式显示三相电压,三相电流的幅值 和相位。电压幅值的大小与电压矢量的长度成比例。电流幅值的大小 与电流矢量的长度成比例。在界面的右侧用数字显示电压,电流的幅 值和相位,并且自动的判断电压相序和电流相序是否正确。用白色方 块表示幅值大小,相序无法判断,用红色方块表示相序错误,用绿色 方块表示相序正确。所有矢量都是以UA为相位参考,界面如图4所 示:

图 4

卓亚电力(认证)官网: http://www.power-kva.com 编辑: 公共信息部

8.2 操作说明

8.2.1 数据保持功能

保持功能使屏幕上的参数测量值,矢量图保持不变,便于用户读 取、分析等。通过按下 F2 键即可实现当前测量结果的保持与取消保 持。

8.2.2 切换到三相伏安界面

在本界面时,按下 F1 键,仪表回到三相伏安界面。

8.2.3 切换到单路测试界面

在本界面时,按下 F4 键,仪表跳转到单路测试界面。

8.2.4 切换到显示设置界面

在本界面时,按下F3键,仪表跳到显示设置界面。

在该界面下,可以实现矢量图的角度正方向,零序位置,基准量角度,以及是否显示UA,UB,UC,IA,IB,IC 矢量。界面如图 5 所示。

用←,→键移动到需要更改的项目,并用↑,↓键更改项目选项。 由于电测计量部门和继电保护部门不同用户习惯不同,国内外不同设 备上显示向量图方式也不同,为方便用户使用,向量图绘制还可以根 据用户习惯进行设置,角度正方向可设为顺时针或逆时针,0°角可 设为12 点钟方向或3 点钟方向,基准量可以设为0°或330°。

可以设置是否显示 UA,UB,UC,IA,IB,IC.更改完参数设置后,可以按F3键,保存设置,另外也可按F2直接复默认设置参数,按F1键回到矢量图界面查看设置的结果。

图 5

如设置基准量角度为 330°,则在向量图显示时会将基准量的角 度调整显示为330°其余各量会根据同基准量之间的相位角进行相应 的调整,保证各输入量之间的相位关系。

增加此功能是为方便电能计量使用部门在三相三线制时的测量。 根据相电压与线电压之间的关系,如假定 UA 为 0°,则 UAB 应为 330°。

假设 UA = 200.0 $\angle 0^{\circ}$, UB = 210.0 $\angle 240^{\circ}$, UC = 160.0 \angle 120° , IA = 5.0 $\angle 30^{\circ}$, IB = 8.0 $\angle 270^{\circ}$, IC = 6.0 $\angle 150^{\circ}$:

角度正方向为:逆时针,零序位置为:三点,基准量角度为:0°时,矢 量图如图6所示:

图 6

角度正方向为:顺时针,零序位置为:三点,基准量角度为:0°时,矢 量图如图 7 所示:

角度正方向为:逆时针,零序位置为:三点,基准量角度为:330°时, 矢量图如图 8 所示:

图 8

角度正方向为:逆时针,零序位置为:十二点,基准量角度为:0°时, 矢量图如图9所示:

图 9

卓亚电力(认证)官网: http://www.power-kva.com 编辑: 公共信息部

角度正方向为:顺时针,零序位置为:十二点,基准量角度为:0°时, 矢量图如 10 所示:

图 10

9.单路测量

9.1 功能说明

单路测量界面用大字体显示单路的电压,电流,相位,功率因数, 功率,频率参数。大字体显示更清晰简洁,不同于三相伏安界面,本 界面下的可以测量 UA,UB,UC 任一相的频率。界面如图 11 所示。

9.2 操作说明

9.2.1 数据保持功能

保持功能使屏幕上的参数测量值,保持不变,便于用户读取、分 析等。通过按下 F2 键即可实现当前测量结果的保持与取消保持。

9.2.2 切换到矢量图界面

按下 F1 键, 仪表跳转到矢量图界面。

9.2.3 切换通道

按下 F3 键,实现 A 相/B 相/C 相 通道的切换。

9.2.4 切换到相位测量界面

按下 F4 键, 仪表跳转到相位测量界面。

10. 相位测量界面

10.1 功能说明

相位测量界面以UA为相位参考,分别显示UB,UC,IA,IB,IC的绝对相位,并计算每一相电压与电流之间的相位差,同时显示UA,UB,UC,IA,IB,IC的幅值。界面如图12所示。

10.2 操作说明

10.2.1 数据保持功能

保持功能使屏幕上的参数测量值,保持不变,便于用户读取、分析等。通过按下 F2 键即可实现当前测量结果的保持与取消保持。

10.2.2 切换到单路测量界面

按下 F1 键, 仪表跳转到单路测量界面。

10.2.3 切换到功率测量界面

相位测量				
输入	幅值(V)	相位(°)	∮UI	
U1	0.0	0.0	105 /	
I1	0.0000	125.4	140.4	
U2	0.0	154.4	15 0	
12	0.0000	200.2	40.0	
U3	0.0	223.5		
I3	0.0000	264.2	40.7	
单路测量	停止		功率测量	

按下 F4 键, 仪表跳转到功率测量界面。

图 12

11. 功率测量

11.1 功能说明

功率测量界面显示三相的功率因数,有功功率,有功功率因数, 无功功率因数,无功功率,总有功功率,总无功功率。界面如图 13 所示。

11.2 操作说明

11.2.1 数据保持功能

保持功能使屏幕上的参数测量值,保持不变,便于用户读取、分 析等。通过按下 F2 键即可实现当前测量结果的保持与取消保持。

11.2.2 切换到相位测量界面

按下 F1 键, 仪表跳转到相位测量界面。

11.2.3 切换到不平衡度界面

按下 F4 键, 仪表跳转到不平衡度界面。

12. 三相不平衡测量

12.1 功能说明

三相不平衡度界面,测量三相电压的正序分量,负序分量,计 算电压的不平衡度,测量三相电流正序分量,电流负序分量,计算电 流的不平衡度。界面如图 14 所示。

12.2 操作说明

12.2.1 数据保持功能

保持功能使屏幕上的参数测量值,保持不变,便于用户读取、分析等。通过按下 F2 键即可实现当前测量结果的保持与取消保持。

12.2.2 切换到功率测量界面

按下 F1 键, 仪表跳转到功率测量界面。

12.2.3 切换到参数设置界面

按下 F4 键, 仪表跳转到参数设置界面。

图 14

13. 参数设置

13.1 功能说明

参数设置界面,可以设置当前的日期,时间,电池供电时的液晶 背光亮度,外接电源时液晶背光亮度,关液晶背光时间(电池供电时), 降低电池供电时的液晶背光亮度和减少关液晶背光时间可以大幅提 高仪表的电池待机时间。界面如图 15 所示。

13.2 操作说明

用←,→键移动到需要更改的项目,并用↑,↓键更改项目选项。 需要注意的事更改日期时间后,按F4保存,更改其它参数后,按F3 保存。

13.2.1 设置日期,时间

用←,→键移动光标到需要更改的日期或时间处,用↑,↓键更

改数值,更改完成后,按F4键保存时间设置。

13.2.2 更改背光亮度和关液晶背光时间

用←,→键移动光标到需要更改处,用↑,↓键更改选项,更改 完成后,按F3键保存设置。

13.2.3 切换到不平衡度界面

按 F1 键, 仪表跳转到三相不平衡度测量界面。

图 15

第三部分 产品外形图

仪表尺寸: 240*135*60mm

外包装箱尺寸: 390*290*105mm

系统配置示意图

注:无线中继器是选配件

主机

电流钳

电压笔

充电器